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Abstract—The shape control problem involves deforming a non-
rigid object into a desired shape. In this paper, we present a new
3D shape control method that can handle large deformations
of texture-less objects. In particular, we use functional maps to
generate surface points’ correspondences between the current and
the desired shape that serve as input for our Procrustes-based
multi-scale control strategy. The main contribution is a multi-
scale analysis with a relaxed rigidity assumption that defines
scales based on geodesic distances to the grippers. Our method
considers that objects may deform at different scales depending
on the gripper actions applied to them. For this reason, our multi-
scale analysis computes shape control actions defined according
to gripper influence on particularly convenient scales. We present
stability analysis and discuss several simulations and experiments.

Keywords—Shape control, deformable object manipulation,
multi-robot manipulation, shape servoing.

I. INTRODUCTION

AUTOMATING object deformation processes has multiple
applications such as manipulation-related tasks performed

in industrial processes, surgical procedures or home-robotics.
The wide variety of tasks and object types hinders the process
of classifying and contextualising control strategies. This paper
focuses on the shape control task, which is defined in surveys
of the deformable object manipulation literature (e.g., [1]–[3]).
Within the deformable object manipulation context, these sur-
veys propose different criteria for the classification of objects,
control strategies or perception methods. In [2], a deformable
object classification is proposed. Based on physical and shape
criteria, [2] classifies objects into cloth-like, linear, planar and
solid objects. Within the manipulation tasks, they include the
shape control problem for planar objects and sub-divide it
into single point and multiple points shape control. Survey [3]
includes a classification of objects according to their spatial
dimensions and categorises them into 1D, 2D and 3D objects.
Regarding the deformable object perception, [1] classifies the
perception of deformable objects into: force-based, vision-
based, and both vision and force-based perception. Focusing
more on vision-based sensing, [3] includes control-related
concepts such as state estimation, model, state-template or
parameter identification in its perception section.

A. Related work
Some shape control methods rely on the use of Jacobian

matrices that model the object deformation dynamics in a

I. Cuiral-Zueco and G. López-Nicolás are with Instituto de Inves-
tigación en Ingenierı́a de Aragón, Universidad de Zaragoza, Spain.
ignaciocuiral@unizar.es, gonlopez@unizar.es. This
work was supported via projects PID2021-124137OB-I00 and TED2021-
130224B-I00 funded by MCIN/AEI/10.13039/501100011033, by ERDF A
way of making Europe and by the European Union NextGenerationEU/PRTR.

local manner. This is the case of [4] in which the stretch
limits of the objects and gripper collisions are considered.
In [5], the Jacobian matrix is estimated from visual-features
and used to control feedback points of elastic objects. In [6]
and [7], the authors exploit the As-Rigid-As-Possible defor-
mation model (ARAP [8]) in order to achieve shape control.
Both approaches are validated through several experiments.
Another Jacobian computation approach is presented in [9],
where the Jacobian matrix parameters are estimated with the
use of truncated Fourier series of the 2D object’s contour
(i.e. the object’s 1D closed contour embedded in 2D). The
method is validated in experiments that involve an active and a
passive gripper. Using Fourier series as well, dual-arm flexible
cable manipulation experiments are presented in [10]. Cable
manipulation is also tackled in [11], [12] and [13]. In the
former, the main-connectivity of the cable’s free configuration
space is captured by a simplified pre-computed descriptor that
allows to numerically solve the cable’s ODE at a reduced
cost. The method in [12] presents a B-spline based model that
relies on 3D tracking wires with the use of a particle filter.
The system proposed in [13] models collisions, contacts and
frictions between cables and a plane in the workspace.

Making use of an adaptive deformation model, experiments
involving materials such as foam, meat or plastic are carried
out satisfactorily in [14]. In [15], a Principal Component
Analysis (PCA) is applied to the 2D contour of the object’s
silhouette. In [16], real experiments involving large isometric
deformations on planar objects are carried out. This method
uses monocular perception and a Shape-from-Template (SfT)
based algorithm. Image contour moments are used to define
a sliding control strategy to control the shape of objects that
range from soft to rigid (articulated) [17]. Their method is
validated with a stability proof and experiments with a dual-
arm robot setup.

In [18], a 3D deformable object servo control based on a
Gaussian Process Regression (GPR) online learned model is
presented. The method in [19] focuses on deformable object
transport and introduces a consensus-based deformation model
for the manipulation of broad flexible objects with the use of
a large number of manipulators. Two heuristic methods and
a neural network for shaping non-prehensile materials with
plastic deformation characteristics (not elastic) are introduced
and compared in [20]. They acquire desired shapes by pushing
kinetic sand with adapted robotic arms. For more state of
the art publications we refer the reader to the special issue
[21] which collects a variety of publications focusing on the
manipulation of deformable objects.

B. Proposed method and contributions
In the deformable object manipulation literature, some meth-

ods focus on specific tasks (e.g., object cutting [22]) or specific
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Fig. 1: Control scheme of the shape control method. A 3D object mesh is extracted from the scene’s 3D reconstruction. Using
functional maps, the current shape mesh is matched to the reference (or target) shape mesh. A multi-scale analysis is then
performed making use of a local rigidity measurement of how rigidly the object behaves at each scale. The multi-scale analysis
provides an optimal scale value that serves as input for our control law.

object types (e.g., flexible PCB manipulation in [23]). In this
paper we propose a method for shape control that tackles the
manipulation of texture-less objects that may undergo large 3D
deformations (i.e. object’s curvature, length, area or volume
can globally vary in 3D space). Note that we focus on shape
control, meaning that object transport (e.g., considering error
with a rigid component such as an arbitrary translation and
rotation of the object) is outside our scope. The goal is to
define a control system that allows to manipulate the shape of
a deformable object towards a desired target shape with the
use of robots and vision sensors (Fig. 1).

Objects are assumed to be large-strain (i.e. to have low
Young’s modulus) and we assume there is no information about
their specific physical properties (density, stiffness, etc.). We
focus on objects that present certain rigidity such that gravity
or inertia do not dominate their behaviour (e.g. clothes are not
considered). Our assumptions include proper object perception
(no significant occlusions) and knowledge of the initial gripper
configuration. While better results might be achieved with
appropriate gripper configuration, our method does not rely
on the assumption that the grippers are ideally positioned on
the object. The effects of gravity and inertia are disregarded
given the assumption that deformations are gradual and slow.
As the objects may be texture-less, our method does not rely
on visual descriptors.

Regarding the control strategy (see Fig. 1), in section II
we propose a multi-scale analysis to determine the scale on
which our novel control strategy should be focused at each
time instant during the deformation process (scale defined as
the topological distance at which surface points lie from a
gripper). We do so under what we defined as the local rigidity
assumption. We validate the assumption by means of a multi-
scale Procrustes analysis, i.e. we measure the extent to which
the object can be considered to be moving rigidly at each
scale. Using this information, we define a 6 DoF control
action for each one of the grippers that are manipulating
the object. We provide a stability analysis (section III) and
several simulation and experiments (section IV) that validate

our proposed system.
In the following, we will discuss and analyse the main

contributions and contextualise them in the literature.

• We define a novel shape control framework for 3D
deformations of both planar and volumetric objects. Our
method is the first 3D shape control system that, with
the use of functional maps, performs a holistic shape
analysis. That is, thanks to the novel application of [24]
in a real shape control setup, we define our 3D control
strategy and shape error by analysing all of the object’s
perceived geometry (regardless of its visual texture) and
consider deformations at different scales. Most existing
methods tackle 1D (linear) objects (e.g. [12], [13], [25]–
[27]) or confine their analysis to 2D contours (e.g., [9],
[15], [17], [28]). Few methods address 3D deformations
of planar and/or volumetric objects, e.g. [14], [18],
[29]. Rather than addressing holistic shape control, these
methods present task-oriented approaches. For example,
they base their shape analysis and errors on a few
discrete features such as a segment’s curvature, the
object’s centroid or the position of a reduced number
of feature points.

• We prove local asymptotic stability of our control sys-
tem and further validate the method with experiments.
Related works also study local stability [14], [18]; other
works such as [29] do not provide stability analysis nor
guarantees system convergence.

• We validate our proposed model using real data from
our experiments and compare it against other existing
baselines. The comparisons show that our model is suit-
able for shape control given its proper balance between
accuracy and computational time cost.

• Our proposed control method does not require a priori
information or initial exploration of the object’s be-
haviour. Although online-updated, methods such as [14]
or [18] require an initial exploration of the object be-
haviour and/or a random initialisation before converging
to what they refer to as a good enough initial model.
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II. MULTI-SCALE PROCRUSTES SHAPE CONTROL

In this section we present a shape control strategy that, for
each gripper g = 1, ..., G, defines a 6 DoF gripper control
action expressed as a rigid transform Ug ∈ SE(3) (composed
by translation action in ug ∈ R3 and rotational action in Euler
angles ω ∈ R3).

A. Procrustes operator and shape error metric.
Functional maps [24], based on the spectral analysis of the

mesh through the Laplace-Beltrami operator, allow us to obtain
a point-to-point match between current shape and target shape
mesh nodes. We denote the current shape mesh nodes positions
by xm ∈ R3,m = 1, ...,M . These vectors are stacked in
matrix X ∈ R3×M . Each current shape point xm has an
associated (matched) target point ym ∈ R3. These target points
are column-wise stacked in Y ∈ R3×M .

For simplicity of notation, we define the Procrustes operator
(T, dP) = P(X,Y). This operator encloses the orthogonal
Procrustes problem as it takes the two column-to-column
matched sets of point coordinates X,Y and returns their Pro-
crustes distance dP and the rigid transform T(X,Y) ∈ SE(3)
that minimises such distance:

dP(X,Y) = min
R

∥∥R(X− X̄)− (Y − Ȳ)
∥∥
F

s.t.R ∈ SO(3).

(1)

Matrices X̄ ∈ R3×M and Ȳ ∈ R3×M stack the column-wise
mean x̄, ȳ (i.e. the centroid) of matrices X,Y. Matrix R ∈
SO(3) is the rotation component of T and t = ȳ−Rx̄ is the
translation component.

We can apply the Procrustes operator P(X(t),Y) to obtain
shape error

e(t) = dP(X(t),Y), (2)

which measures how similar shapes are (e(t) = 0 when two
shapes are identical). The goal of our control strategy is to
reduce the error metric e(t). Before initiating our control
strategy, we apply T−1(t0), obtained from P(X(t0),Y), to
our target shape as to bring it closer to our current shape in
the 3D embedding.

B. Local-rigidity behaviour (LRB) hypothesis
Consider we were only focusing on the surface points that

lie within a topological distance r from a gripper g, i.e. a
set of Mg object points Xg(t, r) ∈ R3×Mg defined by points
xm(t, r) ∈ Ωg(t, r), where Ωg(t, r) is the object’s surface open
domain defined by a geodesic ball of radius r centred at gripper
g. Suppose the object’s rigidity (unknown for us) allows for
points Xg(t, r) to move on a rigid manner under small gripper
transforms Hg , i.e. Hg ≈ I4 (being I4 the 4 × 4 identity
matrix), and the rest of points in X(t), i.e. xm(t) /∈ Ωg(t, r),
remain unaffected by Hg . We denote this rigid behaviour as
local-rigidity behaviour (LRB for now on). In this scenario, one
could benefit from a Procrustes analysis P(Xg(t, r),Yg(r)),
where Yg(r) ∈ Y are the points matched to those of Xg(t, r).

The transform Tg(t, r) from the Procrustes analysis can be
used to define a incremental transform

Hg(t, r) = exp (∆t log (Tg(t, r))). (3)

where Hg(t, r) belongs to the geodesic path (in SE(3)) defined
from I4 towards Tg(t, r). This path is parameterised by time
step ∆t ∈ R, ∆t ∈ [0, 1] which, when taking low values,
generates Hg(t, r) that meet the small action requirement
for local rigid behaviour (LRB). Therefore, the rigid error
reduction of the subset Xg(t, r) can be performed with actions
Ug(t) = Hg(t, r) and thus the global Procrustes residual of
the whole set X(t) with respect to Y, i.e. e(t), can be reduced
too. Note that, as ∆t → 0, (3) defines the state equation of
Xg(t, r):

Xh
g (t, r) = T {

t∏
t0

elog(Tg(t,r))dt}Xh
g (t0, r), (4)

where h denotes homogeneous coordinates and T operates
on the product integral generating a time-ordered product
T {
∏t

t0
f(t)} = f(t)f(t − dt) · · · f(t0 + dt)f(t0). Equation

(4) constitutes a solution for:

dXh
g (t, r)

dt
= log(Tg(t, r))X

h
g (t, r), (5)

which defines the time derivative of points when they are only
affected by gripper g.

C. Relaxed local-rigidity behaviour (LRB) analysis
In the diminishing rigidity concept introduced in [4], an

exponential decay of the material’s rigidity with respect to
gripper positions is assumed. However, an object may present
diverse and time-varying behaviours depending on its shape
and/or deformation state (e.g., a discontinuous rigidity function
as in a mechanism). Our method does not assume any particu-
lar rigidity decay function on the object. Rather, our proposed
relaxed LRB assumption allows us to evaluate and quantify on
which scale (or topological distance) gripper actions are more
effective in reducing the shape error.

Local-rigidity behaviour (LRB) is certainly met by points
grabbed by the grippers (assuming grasping stability). How-
ever, the rest of the object points will most likely undergo
deformations and thus not present LRB. For this reason, we
base our control strategy on a relaxed assumption of LRB,
i.e., we make use of a multi-scale analysis that quantifies how
close to the LRB our object behaviour is for each analysed
scale. In order to perform a multi-scale analysis, we establish
scale r ∈ [r0, R(t)] being r0 the gripper’s size and R(t) the
largest topological distance that can be found in the object. Our
analysis quantifies the extent to which sets Xg(t, r) behave
rigid-like under any action Ug(t). If actions Ug(t) affected
X(t) at scale r with ideal LRB and assuming linear action
superposition (given object’s isotropy and homogeneity), we
could estimate the resulting shape points X̂(t, r) as:

x̂h
m(t, r) =

1

G

G∑
g

(Ug(t))
δg(m,r)xh

m(t, r) (6)
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where function δg(m, r) allows to disregard actions for points
xm(t, r) /∈ Ωg(t, r):

δg(m, r) :=

{
1 if xm(t, r) ∈ Ωg(t, r)

0 otherwise.
(7)

Using the Procrustes analysis P(X(t), X̂(t, r)), we can obtain
a measure w(t, r) of how much the object presents LRB at each
scale r (i.e. at each topological distance r from the grippers)
when undergoing gripper actions Ug(t):

w(t, r) = 1/ exp(β dP(X(t), X̂(t, r))). (8)

Measure w(t, r) ∈ (0, 1], w(t, r) = 1 when the LRB is fully
met (i.e. dP(X(t), X̂(t, r)) = 0). Parameter β > 0 allows to
modify the relaxation of the LRB assumption. Lower values
of β imply a more relaxed rigidity assumption (e.g., if β =
0.1, almost every w(t, r) ≈ 1 and thus we consider every set
Xg(t, r),∀r ∈ [r0, R(t)] to move rigidly, even if they do not).
We propose using β ≈ 1× 104, which implies a conservative
assumption of LRB.

D. Procrustes-based locally optimal scale estimation
Note that w(t, r) also quantifies the effectiveness with which

the rigid error of Xg(t, r) can be reduced by means of incre-
mental transforms Hg(t, r) as defined in (3) (larger w(t, r)
implies more effectiveness). With this information, we seek to
define gripper actions Ug(t) such that they better benefit the
global error reduction e(t). In order to define Ug(t), we pro-
pose analysing scenarios in r× r′ ∈ R×R : r, r′ ∈ [r0, R(t)].
These scenarios constitute an estimation of the object evolution
if it was affected by actions Ug(t) = Hg(t, r) (defined at
scale r) but presented ideal LRB at scale r′. Each estimation
X̂(t, r, r′) is defined as:

x̂h
m(t, r, r′) =

1

G

G∑
g

T {
t+dt∏
t

(Hg(t, r))
δg(m,r′)}xh

m(t, r′)

(9)
In order to perform our analysis, we define an error increment
estimation surface

ê(t, r, r′) = dP(X̂(t, r, r′),Y)− e(t). (10)

Surface ê(t, r, r′) constitutes a continuous surface that pro-
vides an insight on the effectiveness and risks in reducing error
e(t) by means of actions Ug(t) = Hg(t, r) (generated under
the ideal LRB assumption). We can incorporate our knowledge
on how much the LRB is met at each scale r′ (i.e. w(t, r′))
and define an error-reduction effectiveness q(t, r) ∈ R which,
for each estimated transform Hg(t, r), yields:

q(t, r) =

∫ R

r0

ê(t, r, r′)w(t, r′)dr′. (11)

In (11), ideal error increment estimations ê(t, r, r′) are
weighted by the error reduction effectiveness w(t, r′). In
particular, q(t, r) estimates the global error increment that
each Hg(t, r) (3) can generate. The logical choice of r when

defining gripper actions Ug(t) = Hg(t, r) would be the
one that ensures the largest error reduction, i.e. Ug(t) =
Hg(t, r

∗(t)), r∗(t) = argminr(q(t, r)). However, w(t, r)
(present in the definition of q(t, r)) is computed based on
the effects of previous actions defined according to Ug(t) =
Hg(t, r

∗(t)). For q(t, r) to be reliable, updates in r∗(t) should
take place in the locality of r∗(t). For this reason we define
r∗(t) as:

r∗(t) = −
∫ t

t0

∂q(t, r∗(t))

∂r
+ r∗(t0), (12)

which updates r∗(t) in the direction of the ∂/∂r component
of the gradient for a given time instant t and thus generates a
locally optimal r∗(t).

Note that (12) requires q(t, r∗(t)) to be continuous dif-
ferentiable with respect to r. This implies e(t), w(t, r′) and
ê(t, r, r′), and thus Procrustes transforms Tg and distances
dP , should be continuous differentiable with respect to r. The
residual dP is continuous and differentiable as it constitutes
a metric in shape space [30]. On the other hand, showing
that the Procrustes optimisation result Tg is continuous and
differentiable with respect to r requires more development that
can be found in Appendix A.

We now provide some intuitions on impact of β in (8) on
(12). When setting a low value for β (e.g., β = 0.1), we assume
that our LRB hypothesis holds even for actions and scales
that lie far from our current actions Ug(t) and scale r∗(t).
Consequently, surface q(r, t) allows for a more unrestricted
evolution of r∗(t), which could potentially lead to undesired
system behaviours such as slower performance or, in the case
of extremely low values of β, to larger final error. On the other
hand, a high β (e.g., β = 1×104) leads to a conservative q(r, t)
surface that disregards estimates that lie far from the current
actions and locally optimal scale. This conservative approach
generates resistance to large changes in r∗(t), confining its
movement to regions where the LRB hypothesis has been
validated through measurements across iterations. Very large
β values will not compromise the system’s effectiveness, but
they will lead to slower convergence as r∗(t) evolves more
conservatively.

E. Control strategy
Our control strategy makes use of the Procrustes action

defined at scale r∗(t), i.e. Tg(t, r
∗(t)). We defined our control

law as the new term in the time-ordered product of (4):

Ug(t) = exp (log (Tg(t, r
∗(t)))dt). (13)

This results in the state equation of X(t) (for each individual
xm(t) ∈ X(t))

xh
m(t) =

1

G

G∑
g

T {
t∏
t0

(Ug(t))
δg(m,r∗(t))}xh

m(t0, r
∗(t0)),

(14)
with r∗(t) updated as in (12). Note that the update rule in
(12) needs an initial value of r∗(t0) and w(t0, r

′). We propose
w(t0, r

′) = 1∀r′, which is equivalent to assuming equal LRB
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at all scales r′. Our initial estimation of r′ takes the minimum
at the initial time instant, that is r∗(t0) = argminr(q(t0, r)).
Note that, for the update of r∗(t), the partial derivative of
q(t, r∗(t)) in (12) needs to be evaluated only at r∗(t). This
avoids the need to compute q(t, r) in (11) for all r except
for the neighbourhood of r∗(t), contributing to the cost-
effectiveness of our method. Furthermore, the rest of the
method relies on matrix operations and SVD decomposition,
further enhancing its low-cost nature, as it will be illustrated
in the experiments section.

III. STABILITY ANALYSIS

In this section we prove that the contribution of each gripper
to the error derivative ė(t) presents local asymptotic stability.
First, some preliminary concepts are presented. Then, we
introduce several lemmas that lead to theorem III.4, which
concludes local asymptotic stability of the system.

A. Preface

We use Tr to refer to the matrix’s trace. For clarity, the
dependence on r∗ and t has been omitted when it could be
easily inferred. Recall super-index h denotes homogeneous
coordinates. The transpose of the logarithm of a rigid transform
is (see Appendix A in [31]):

log(T⊺
g) = log

(
Rg

01×3

tg
1

)
=

(
log (R⊺

g)
(t′)⊺

04×1

)
,

(15)
where the rotation term log(R⊺

g) can be obtained from:

log(Rg) =
θ

2 sin(θ)
(Rg −R⊺

g), (16)

being θ ∈ (−π, π) the angle of rotation induced by Rg .
Translation term t′ ∈ R3 in (15) is t′ = Vgtg (recall
tg = ȳg −Rgx̄g), being Vg ∈ R3×3:

Vg = I3 −
1

2
log(Rg) +

1

θ2

(
1− θ(1 + cos(θ))

2 sin(θ)

)
log(Rg)

2.

(17)

B. Lyapunov stability

Note that the Procrustes residual is invariant to changes in
the frame of reference as transformations Tg can be expressed
in any frame of reference. For convenience we defined G
inertial frames of reference Fg(t) with axes always aligned
with the global reference axes. Although their orientation does
not change, frames Fg(t) present a changing position x̄g(t),
being x̄g(t) the centroid of Xg(t, r

∗(t)). This is specially
convenient as Fg(t) implies x̄g = 0,∀ t (for that particular
reference). For now on, sub-index g implies point coordinates
and transforms are defined from frame Fg(t).

Lemma III.1. Tr
(
Xh

g (X
h
g )

⊺ log(T⊺
g)
)
= 0.

Proof: We can decouple this term into the translation and
rotation terms enclosed in (15):

Tr
(
Xh

g (X
h
g )

⊺ log(T⊺
g)
)

= Tr
(
(X⊺

g , 1Mg
)⊺(X⊺

g , 1Mg
) log(T⊺

g)
)

= Tr

((
XgX

⊺
g Mgx̄g

Mgx̄
⊺
g Mg

)(
log (R⊺

g)
(t′)⊺

04×1

))
= Tr

(
XgX

⊺
g log (R

⊺
g) +Mgx̄g(t

′)⊺

Mgx̄
⊺
g log (R

⊺
g) +Mg(t

′)⊺
04×1

)
= Tr

(
XgX

⊺
g log(R

⊺
g)
)
+MgTr

(
x̄gȳ

⊺
gV

⊺
g

)
= Tr

(
XgX

⊺
g log(R

⊺
g)
)
+MgTr

(
x̄⊺
gVgȳg

)
(18)

where we considered t′ = Vgtg = Vgȳg and, in the last
step, trace invariance with respect to matrix transposition and
cyclic permutations. The second right hand side term in the
last step of (18) is zero since frame of reference Fg(t) ensures
x̄g = 0∀t and the first term from the last step involves the
trace of a symmetric matrix times a skew-symmetric matrix
and thus is always zero.

Lemma III.2. −Tr
(
YgX

⊺
g log(R

⊺
g)
)

≤ 0 ∀t and θ ∈
(−π, π).

Proof: Considering log(R⊺
g) = − log(Rg) we use (16) to

obtain:

Tr
(
YgX

⊺
g log(Rg)

)
=

θ

2 sin(θ)

(〈
R⊺

g ,YgX
⊺
g

〉
F
−
〈
Rg,YgX

⊺
g

〉
F

)
, (19)

where ⟨A,B⟩F = Tr(A⊺B) is the Frobenius inner product.
We define Ỹg = Yg − Ȳg (Ȳg ∈ R3×Mg stacks mean vector
ȳg). Matrix Rg(t, r

∗(t)) is obtained from the Procrustes analy-
sis P(Xg,Yg) in (1) through the singular value decomposition
of matrix ỸgX

⊺
g = QgSgW

⊺
g . Considering that ȲgX

⊺
g = 0

when x̄g = 0, ỸgX
⊺
g = YgX

⊺
g = QgSgW

⊺
g . The optimal

rotation (i.e. the minimiser of the Procrustes optimisation
problem) can be computed as Rg = QgW

⊺
g . Pre-multiplying

and pos-multiplying all four bracket terms in (19) by Q⊺
g

and Wg respectively (both are unitary matrix, so the result
is invariant to them), we obtain:

θ

2 sin(θ)

(〈
Q⊺R⊺

gWg,Sg

〉
F
− ⟨I3,Sg⟩F

)
=

θ

2 sin(θ)
(Tr

(
W⊺

gRgQgSg

)
− Tr (Sg)), (20)

Term θ
2 sin(θ) is always positive for θ ∈ (−π, π) and,

since diagonal matrix Sg contains all positive eigenvalues
Tr(I3Sg) is always equal or larger than Tr(W⊺

gRgQgSg)
(note W⊺

gRgQg ∈ SO(3)). Therefore, (20) is ≤ 0 ∀t and
θ ∈ (−π, π).

Lemma III.3. −MgTr
(
ȳ⊺
gVgȳg

)
≤ 0, ∀t and θ ∈ (−π, π).

Proof: The second term on the right hand side of the
definition of Vg in (17) is a skew symmetric matrix and thus
can be neglected (Tr(x⊺Ax) = 0 for all A skew symmetric
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matrices). The third term on the right hand side in (17)
when using (16) and applying Rodrigues’ rotation formula to
matrices Rg yields:

c

θ2
(log(Rg))

2 = cK2, with c(θ) = 1−θ(1 + cos(θ))

2 sin(θ)
, (21)

where K(θ) is the skew-symmetric matrix from Rodrigues for-
mula and c(θ) ≤ 1 for θ ∈ (−π, π). With these considerations:

−MgTr
(
ȳ⊺
gVgȳg

)
= −MgTr

(
ȳ⊺
g (I3 + cK2)ȳg

)
= −MgTr

(
ȳ⊺
gI3ȳg

)
−MgTr

(
ȳ⊺
gcK

2ȳg

)
= −MgTr

(
ȳ⊺
gI3ȳg

)
−MgTr

(
ȳ⊺
gdiag(−c,−c, 0)ȳg

)
= −MgTr

(
ȳ⊺
gdiag(1− c, 1− c, 1)ȳg

)
,

(22)

where in the third line we applied the fact that K2 is a
symmetric matrix and the eigenvalues of a squared 3×3 skew-
symmetric matrix are always {−1,−1, 0}. Note how (22) is
always ≤ 0 for θ ∈ (−π, π) as c < 1 for θ ∈ (−π, π).

Theorem III.4. The system error e(t) (2) is locally asymptoti-
cally stable with control law (13). In particular, scalar function
V(t) = 1

2 ∥X(t)−Y∥2F is Lyapunov and presents a derivative
V̇g ≤ 0,∀t and θ ∈ (−π, π).

Proof: V(t) > 0, ∀X(t) ̸= Y and V(t) = 0 only when
X(t) = Y. We consider that gripper-unaffected points present
a zero derivative, i.e. dX(t)/dt = 0 for xm(t) /∈ Ωg(t).
We also consider that gripper-affected points’ derivative is
dXh

g/dt = log(Tg(t, r
∗(t))Xh

g (t, r
∗(t)), i.e. deriving (14) as

in (5). Therefore, the derivative of V(t) yields:

V̇ =
1

G

G∑
g

V̇g, (23)

where V̇ ≤ 0 if V̇g ≤ 0, ∀g. Each gripper-associated term V̇g

is

V̇g = Tr
(
(Xh

g −Yh
g )(X

h
g )

⊺ log(T⊺
g)
)

= Tr
(
Xh

g (X
h
g )

⊺ log(T⊺
g)
)
− Tr

(
Yh

g (X
h
g )

⊺ log(T⊺
g)
)
. (24)

Applying lemma III.1, the first right hand side in (24) is zero
and, therefore, V̇g yields:

V̇g = −Tr
(
Yh

g (X
h
g )

⊺ log(T⊺
g)
)

= −Tr

((
YgX

⊺
g Mgȳg

Mgx̄
⊺
g Mg

)(
log (R⊺

g)
(t′)⊺

04×1

))
= −Tr

(
YgX

⊺
g log (R

⊺
g) +Mgȳg(t

′)⊺

Mgx̄g log (R
⊺
g) +Mg(t

′)⊺
04×1

)
= −Tr

(
YgX

⊺
g log(R

⊺
g)
)
−MgTr

(
ȳ⊺
gVgȳg

)
,

(25)

where, for the second right hand side term, we considered
t′ = Vgtg = Vgȳg and trace invariance with respect to matrix
transposition and cyclic permutations. Considering lemmas
III.2 and III.3, both right hand side terms in (25) are ≤ 0, ∀t
and θ ∈ (−π, π) and thus the proof is completed. Note that
computation of r∗ relies in the relaxed assumption of LRB.

For this reason, the stability analysis remains local since there
is no guarantee for a global LRB.

Remark III.5. Note that, as deformable objects constitute
under-actuated systems, the local stability in Theorem III.4
does not guarantee a zero-valued error residual. However, it
does ensure convergence of the closed-loop system towards a
state with a zero error derivative.

IV. RESULTS

A. Simulations
We performed several simulations using the ARAP [8]

deformation model. The simulation results are presented in
Fig. 2. Within this figure, each column presents the results of
a simulation. We normalised the colour map depicting values
of q(t, r) so that negative values are blue, positive values
are yellow and zero (or close to zero) values are green. One
intuition for interpreting surface q(t, r) is to think of each scale
r ∈ [r0, R(t)] (at a given instant t) as an available choice of an
action to be performed under the relaxed LRB assumption. The
value of q(t, r) (11) constitutes the error derivative estimation
that each action will cause. Our method seeks large error
reduction by choosing actions r∗(t) (12) that present large
negative values of q(t, r∗(t)).

The first simulation in Fig. 2 constitutes a challenging case
given its anti-symmetry. This is specially noticeable in the
last plot where surface q(t, r) presents estimations of positive
error derivatives at large scales right at the initial configuration
(t = 0, yellow tones around r = 7 [cm]). In other simulations,
positive derivative estimations begin to appear later during
the control process. Nonetheless, our initial choice of r∗(t0)
ensures q(t, r∗) < 0 and the control task is performed properly.

The simulation in the second column in Fig. 2 constitutes a
paradigmatic example of how our multi-scale analysis works.
Note how our strategy is able to prioritise larger elements of
the object (i.e., larger r∗(t) values) when their contribution
to the error term is large. The gripper positioned at the small
appendix will collaborate in reducing the main beam error.
Whenever the main beam error is reduced, the focus shall
return to the reduction of the appendix’ error (note the scale
transition of r∗(t) between t = 5 and t = 10). The third
column in Fig. 2 involves a pure-twist. This can be challenging
given singularities of the opposed rotation actions. However,
actions are defined symmetrically and the error is smoothly
reduced. Fourth column in Fig. 2 constitutes an example of
pure bending process. Additional simulations are shown in the
attached video.

B. Experiments
We present several experiments (Fig. 3) with deformation

cases analogous to those shown in the simulations. Our setup
consists of two ABB IRB120 industrial robots (equipped with
pneumatic grippers) and an Intel Realsense D415 RGB-D
camera that provides the depth information we use for the
3D analysis. The objects to be handled are single-coloured
foam cut-outs that favour colour-based segmentation. Recall
that our method is designed for relatively rigid objects that
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Fig. 2: Four examples, one per column, are presented. First three rows show the initial (X(t0)), final (X(t)) and target (Y)
shapes. Each gripper is represented with a grey cube. On the object surface, the surface point matching is represented with a
colour map. The fourth row contains the shape error plot (2) and a distribution of the object’s relative deformation (positive
values when the object stretches and negative values if the object is being compressed). The fifth and sixth rows are the action
plots of the grippers: translation vector (i.e. ug) and rotation (Euler angles w) components. The RGB colour code indicates
x, y, z components for translation and roll, pitch, yaw components for rotation. In the action-related plots (i.e. fifth and sixth
rows), each line-style refers to a particular gripper. The last row represents surface q(t, r) and the evolution of r∗(t) through
time (red line).
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Fig. 3: Four experiments, from left to right, that constitute analogous deformation cases to those of Fig. 2. First block shows
several snapshots of the experiments and the target shape (Y). Each gripper is represented with a grey cube. The surface point
matching is represented with a colour map. Next rows contain the shape error, the translation action vector ug , and rotation
action components (Euler angles ω). In the action plots, each line-style refers to a particular gripper, and the RGB colour code
indicates x, y, z components. Last row represents surface q(k, r) and the evolution of r∗(k) (red line).
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Fig. 4: The figure presents a comparison of our proposed
shape control model against two geometry-based deformation
models [8] and [32], and against as a mass-spring-damper
(MSD) physical-based model. On the top row, for each of the
four experiments, the models’ estimation error is presented.
The estimation error is determined by evaluating the distance
distribution between predicted and measured node positions
across iterations. On the second row, the time cost of each
process is represented in terms of processing frequency.

align with our local-rigidity behaviour assumption. Therefore,
we cannot guarantee its proper performance with softer objects,
such as clothes. The analysis is carried out in Matlab and the
communication with the robots is via TCP/IP. To avoid drop-
ping below the process frequency of 5 Hz with the previously
mentioned set-up, we propose discretising r to a set of around
20 scale values. Note that, given the analysis in Appendix A,
q(r, t) in (12) is continuous differentiable. Therefore, using
discrete points to approximate partial derivatives of q(r, t) by
means of classic methods (e.g., polynomial regression) holds
mathematical significance. Regarding the code implementa-
tion, experiments were conducted on an Intel(R) Core(TM)
i7-8565U CPU with 1.99 GHz and 16 GB of RAM 1.

All shape control problems tackled in the experiments
involve 3D surfaces. Target shapes have been pre-defined with
robot configurations that ensure that the shape is achievable;
this ensures, for example, that the robot is not required to
leave its workspace. The setup, the object-segmentation and
several relevant time instants are shown in Fig. 3. For each of
the four experiments several acquired RGB images are shown
grayscale along with the object segmentation highlighted in
blue. The object’s 3D points (corresponding to each time
instant) are shown from a slightly elevated viewpoint that
provides a better understanding of the 3D configuration of the

1Available demo code for the method is provided in https://github.com/
nachocz/Multi-scale-Procrustes-based-3D-shape-control

object. The grippers are represented with gray cubes, and the
target shape Y with the surface mapping (colour map on the
object) is shown at the bottom of the sequence. The attached
video presents several additional perspectives that provide a
better insight of the 3D configurations of the objects.

The first experiment in Fig. 3 involves an anti-symmetric
bending process along with a light twist. A trend-change can
be observed on the actions after k = 20, specially on the y and
z components of ug (green and blue) and the y components
of ω (green). This is a consequence of the evolution of r∗(k)
during the first 50 iterations: our system focuses first on the
bending process as it is responsible for larger error reduction
and then tackles the twisting process.

The second experiment consists of unfolding an object from
a bent to a straightened configuration. This shape control
problem is particularly challenging as, when approaching the
target shape (around k = 110) the object buckles thus breaking
the assumption of small deformations between iterations and
generating unreliable estimations of q(k, r). The buckling
produces a global shape change on the object and thus r∗(k)
undergoes an abrupt change towards global scale values (i.e.,
r∗(t) = R(t)). Even so, the system shows robustness and
manages to continue converging. The buckling process can
be better perceived in Fig. 3 and in the top view of the
experiments video: between k = 111 and k = 112 the object
suddenly changes its curvature with respect to the camera’s
front view.

The third experiment in Fig. 3 involves a pure-twisting
process. As in the analogue simulation, the alignment of the
rotation axes can be problematic, as opposite rotation actions
are coupled. Our control system generates symmetric rotation
actions that evenly deform both sides of the object. Optimal
scale r∗(t) increases as the object increases its rigidity due to
the accumulated torsion: the object’s response to pure rotation
at larger scales takes some iterations. This is not the case in
the analogous simulation, as the ARAP deformation model
prioritises homogeneous deformation along the whole object
from the initial time instant. The fourth experiment involves
the 3D bending of a triangle shape. The shape control task is
properly managed. However, it is worth mentioning a small
error increase at k = 105. This is due to a discontinuity in
the surface mapping that infringes the assumption of surface
continuity. This lack of map-continuity can be appreciated in
the last column of Fig. 3, where a colour map discontinuity
can be observed on the left side of the triangle (k = 105). As
a result, peaks (outliers) around k = 105 can be observed in
all the plots of the fourth column in Fig. 3.

Figure 4 shows the analysis of our proposed Procrustes-
based deformation model regarding estimation error, compu-
tation frequency, and volume of analysed data. The estimation
error is defined by comparing predicted and measured node
positions during iterations. We compared our model against
geometry-based deformation models from [8] (used in [6] [7])
and [32], as well as a mass-spring-damper (MSD) physical-
based model. Our model competes well with these three
models, achieving a desirable balance between accuracy and
computation time-cost. In addition, unlike the time cost of the
other three models, our process’ time cost also encompasses

https://github.com/nachocz/Multi-scale-Procrustes-based-3D-shape-control
https://github.com/nachocz/Multi-scale-Procrustes-based-3D-shape-control
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the cost of computing the control actions. The favourable bal-
ance between model accuracy and low computation time cost
makes our model an attractive choice for shape control. Note
that these comparisons do not aim to constitute conventional
bench-marking: some aspects, such as the type of mesh or the
set maximum number of optimisation iterations, may affect
the performance of different deformation models in distinct
manners. This makes it difficult to make fair comparisons.
However, seeking fairness in the comparisons, we imposed
a maximum limit of 20 iterations on the optimisation process
for all of the compared models. This approach allows for a
reasonable evaluation of model performance in shape control,
despite the inherent complexities involved in comparing di-
verse methods.

V. CONCLUSIONS

We developed a novel 3D shape control strategy that does
not rely on physical models but rather on a multi-scale shape
analysis that allows to prioritise those parts of the objects that
not only contribute more to the error metric but also can be
influenced by the grippers to an estimated extent. We provided
theoretical analysis of local asymptotic stability of the control
system and performed several simulations and experiments
that validate the system showing robustness and proper error
convergence. To the best of our knowledge this is the first
3D shape control framework involving multi-scale geometric
analysis of texture-less objects. Regarding future work, an
interesting research line would be decoupling the scale at
which each gripper is acting, i.e. independently defining an
r∗ for each gripper and thus (most likely) achieving more
error reduction in certain cases. Note that this is nontrivial
as the dimensionality of the problem increases by G (i.e.,
r1 × ...× rG).

APPENDIX

A. Differentiability of Tg with respect to r

In this appendix we study continuity and differentiability of
Tg (i.e. of Rg, tg) with respect to r. Variations in r imply
a smooth variation on the domains Ωg being considered for
the Procrustes analysis (domains are enlarged or reduced by
boundary ∂Ωg). Regarding the continuous Procrustes prob-
lem definition in [30], we can define our analogous space-
continuous squared Procrustes residual for Xg and Yg as:

d2P(Xg,Yg) = min
Rg, tg

(∫
Ωg

∥Rgx+ tg − y∥2 dΩ

)
, (26)

where x and y represent mapped points of the shapes’ surface
manifolds. For now on, as x are mapped to y with area pre-
serving maps [24], we will use dΩg to refer to the differential
elements on both the current and the target shape manifolds.
The optimal translation, in this continuous formulation, is

tg =

∫
Ωg

ydΩg∫
Ωg

dΩg
−

∫
Ωg

RgxdΩg∫
Ωg

dΩg
=

∫
Ωg

(y −Rgx)dΩg∫
Ωg

dΩg
, (27)

and can be differentiated with respect to r to obtain:

∂

∂r
tg =

∂

∂r

(∫
Ωg

(y −Rgx)dΩg∫
Ωg

dΩg

)

=
∂

∂r

(
1

A

)∫
Ωg

(y−Rgx)dΩg+
1

A

∂

∂r

(∫
Ωg

(y −Rgx)dΩg

)
= − 1

A2

∂A

∂r

∫
Ωg

(y −Rgx)dΩg

+
1

A

(∫
Ωg

∂Rg

∂r
xdΩg +

∫
∂Ωg

(y −Rgx)d(∂Ωg)

)
, (28)

where A(r) is the area of the open domain Ωg and, in the
last step, we applied the Leibniz’s integral rule. Note that
(28) depends on the existence of ∂Rg

∂r . The optimal Procrustes
rotation component Rg can be obtained from:

Rg =
√
MgM

⊺
g M

−1
g , (29)

where Mg(r) ∈ R3×3 is equal to:

Mg(r) =

∫
Ωg

(x− x̄g) (y − ȳg)
⊺
dΩg. (30)

In this continuous formulation x̄g =
∫
Ωg

xdΩg/
∫
Ωg

dΩg

and ȳg =
∫
Ωg

ydΩg/
∫
Ωg

dΩg . Equation (29), and therefore
Rg , is continuous differentiable with respect to r given two
conditions: Mg being continuous differentiable and existence
of M−1

g for r ∈ [r0, R(t)]. Mg(r) is differentiable with respect
to r, ∀ r > 0:

∂

∂r
Mg =

∫
Ωg

∂

∂r
((x− x̄g) (y − ȳg)

⊺
) dΩg

+

∫
∂Ωg

(x− x̄g) (y − ȳg)
⊺
d(∂Ωg). (31)

On the other hand, M−1
g exists if there exist at least three non-

aligned points x and three non-aligned points y in the domains
Ωg of each manifold. This condition is certainly achieved for
any 3D object (planar or volumetric) and r > 0.
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